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Note 

Symmetry Transformation of Crystal Wave Functions 

1. INTRODUCTION 

A number of operating computer programs for the complete symmetry adaptation 
of electronic wavefunctions with respect to crystallographic groups have been carefully 
tested, and certain corrections in the earlier theoretical description of the symmetriza- 
tion procedure are made. 

Using group algebra to decompose the Hamiltonian of a quantum system, it is 
necessary to know the irreducible representations. In the case of finite-order groups a 
general technique of finding the irreducible representations has been presented [I] 
and programmed for a computer [2]. The symmetrization procedure has been perform- 
ed in explicit terms for crystallographic states [3] and has also been programmed for 
a computer [4]. This program is used in combination with programs for computing 
energy bands according to the tight-binding and augmented-plane-wave (APW) 
methods. A review article is available describing the techniques to be used for 
magnetic space groups [5], although this procedure has not been programmed so far. 
Also, nonnumerical methods are possible in using computers to find the irreducible 
representatives [6]. 

One of the most useful contributions to the theory of symmetry adaptation of trial 
states in quantum mechanics was given by Wigner [7]. By using his projection operator 
PI9 

jsmm = Vi/d c i~*khw7a~, (1) 
AEG 

states belonging to the symmetry type 1 jm) with respect to the group G of the 
Hamiltonian are obtained. The notations used in (1) are standard: A is an element of G, 
which is supposed to have finite order g, and jL&4)mn are matrix elements of one of its 
irreducible representations, the order of which is denoted by lj . 

The matrix representative of (1) in a trial basis of finite order N is singular (when 
the basis is reducible). Denoting by n3 the number of times the jth irreducible re- 
presentation is found in the basis, there are only njZi linearly independent columns 
in this matrix. By orthonormalizing the columns of the projection matrix, a rectangular 
matrix jtm of order n& x N is thus obtained [3]. This is the so-called “reduction 
matrix” by means of which the Hamiltonian matrix can be reduced from order N to 
order nilj according to 

jmH = jt,tH it, . (2) 

The main difficulty of performing this procedure is to find the irreducible matrix 
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representatives occurring in the expression (1) for the projection operator. This 
problem has been solved for arbitrary finite groups [I], and the method has been 
programmed for a computer. The corresponding program, IRREP, is available at 
the Quantum Chemistry Exchange Program (QCPE) of Indiana Univ., Bloomington, 
Indiana [2]. The symmetry adapatation procedure has also been programmed in the 
cases of the tight-binding and APW methods for computing electron states in crystals 
[41. 

These programs are very general and are now in full use, combined with other 
available programs for energy band calculations. 

The procedure of symmetry adaptation of crystallographic states is also described 
by Blokker [9]. This paper was written under guidance of the present author, but it 
contains a number of mistakes which are due, partly, to using an unnecessarily 
complicated transformation scheme. This makes it necessary to rewrite some of the 
derivations in detail. 

2. TRANSFORMATION OF CRYSTAL ORBITALS 

Consider a primitive crystallographic lattice vector n and a vector TV detiing the 
position of an atomic site in the unit cell. A space group operation F = (P 1 t) is 
defined as the combination T(t) P between a point group operator P and a translation 
T(t) through the distance t. When F operates on the atomic position vector n + F 
another atomic position vector n’ + Y is obtained where n’ is a primitive lattice 
vector. Thus, 

FF = v + +‘, P-L, 4, (3 

where n(F, IL, V) = n’ - Pn defines a primitive lattice vector. This definition is the 
same as given by [3], but it differs from Blokker’s formula [9, (5.15)]. 

Now consider a wavefunction #(r) which may be localized to a lattice site, used 
as the origin of the coordinate system. Translating this function by T,,(n + p) one 
obtains the function #(r - II - p) = &,+,,(r). This is thus a function localized to 
the atomic position n + t.~. By means of (3) and the definition Fo,a,bo(r) = &(F-9) 
for For, , then 

where 
h&r - n - p) = #(F--9 - n - g) = #(P-‘(r - T)), (4) 

T = v + Pn + n(F, p, v) (5) 

is the center of localization for the transformed function (4). This result coincides 
with Blokker’s formula [9, (5.17)], although his definition of n(F, p, v) is not the same 
as in (3). This is erroneous, since Blokker has used Wigner’s definition for transforma- 
tion of functions, forgetting that certain operations are forbidden in his transformation 
scheme [7, p. 106)]. In our scheme a geometrical definition is used where it is important 
to keep the same variable r in a series of consecutive operations, as is done in (4). 
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In the linear-combination-of-atomic-orbit& (LCAO) method, one uses a basis 
of localized wave functions 

9 a* = G+, , /J&l ,...>. (6) 

These wavefunctions form a closed set which is invariant under point group operation 
through the center of localization given by the position vector II -t p. Using this set 
to form a set of Bloch wavefunctions 

9 k.II = 1 eik” 4hw , (7) 
II 

we obtain [3] 

Fo,+k,, = +Pk,$w - (8) 

In the case when F belongs to the little group of k, Pk can be replaced by k in (8), 
and 

F,, = ~(FF, v $ n(F, p, v))e-ik’n(Fs)r*v)P, (9) 

where G(Fp, v + n(F, p, v)) = 1 if (3) is fulfilled and zero otherwise. 
The matrix P represents the corresponding point group operator with respect to the 

center II + or in the basis (6). Forming a basis of Bloch functions according to the 
tight-binding approximation, 

yk = (&I, +k.v ,.-1, (10) 

where all atomic positions TV, v,... of the primitive unit cell occur, we thus obtain 

Fopyk = Y,F. (11) 

Here F is the block matrix 

F = f; ;;; 111) (12) 

given by the submatrices (9). 
In [9, Eq. (5.33)], TV and v have been interchanged in F,, by mistake; the erroneous 

occurrence of the inverse of F in the definition of n(F, 1, v) as discussed above makes 
this formula again correct. The computer program [4] for symmetry adaptation of 
crystal orbitals which works according to [9, (5.33)] in the tight-binding case therefore 
gives correct results. 

3. SYMMETRY ADAPTATION OF CRYSTAL ORBITAL~ 

Starting with a trial basis of Bloch wavefunctions (7), it suffices to use Wigner’s 
projection operator for the allowable irreducible representations of the factor group 
Gk/Tk in order to find a completely symmetry-adapted basis with respect to the 



SYMMETRY TRANSFORMATION 317 

crystallographic group G. Here Gk is the little group of k defined by the subgroup of G 
whose elements F = (P 1 t) fulfill the condition 

Pk = k + K, (13) 

where K is 2rr times a primitive reciprocal-lattice vector and Tk is a subgroup of the 
group GT of primitive lattice translations T(n), the elements, T(d), of Tk determined 
by the condition 

e -1. --ikm' _ (14) 

Setting F = (P, 1 u1 + II), where n = II’ + m is a primitive lattice vector and m 
does not satisfy the condition (14) when m # 0, the elements of Gk/Tk are related to 
the coset representatives (P, I u1 + m). To find the multiplication table of G,/Tk , 
we label the elements (l, s) of this group by two indices; I is a label for the point 
group elements in the little group and s is defined by 

s = exp(--ik . (IQ + m)), (15) 

which can take only a small number of different values. Thus G,/T, is a group of 
finite order. Its multiplication table is obtained using (15) and the product rule for 
space group elements, 

(Pi I uz + m)(Pf I 4’ + m’) = (P,Pr I P& + m’) + uz + m). (16) 

Once this multiplication table for the group Gk/Tk is obtained, there is a general 
method for finding its irreducible representatives [l]. This method is used in the 
program IRREP [2] occurring as a subprogram in the symmetry projection programs 
[4]. Having found the irreducible representations of G,/T, one must select irreducible 
representations jkrA((P 1 u + m)) which are “allowable.” These representations satisfy 
the condition that a primitive translation T(m) occurring as a factor in the space group 
element F = T(m) 8” related to the elements of Gk/Tk is represented by the irreducible 
representative of F’ multiplied by the factor exp(--ik * m). 

The irreducible representations are particularly simple, when k is a vector inside 
the Brillouin zone or when GL is symmorphic. In these cases the factor (15) is just 
multiplied by the irreducible representation of the point group. In other cases the 
general method discussed above must be used. Using the basis (10) the projection 
matrix will be built up from subblocks 

(‘k%Z>vp = &k/gk) c j"r,*((P j t))dd exp[--ik + n(F, Jo, v)]P. (17) 
(PIt)EGk(,L.V)/Tk 

Here the sum is limited to elements of Gk/Tk combining the atomic sites t.~ and Y 
according to (3) thus forming the subset Gk(p, v)/T, . 

The projection matrix thus obtained is automatically block-diagonal with respect 
to different chemical elements in the atomic basis. It is also block-diagonal with 
respect to the angular momentum quantum number, in the case when the basis 
functions are spherical harmonics. It is a straightforward procedure to compute the 
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reduction matrices from (17) and reduce the Hamiltonian matrix according to (2). 
In the more general case of magnetic crystallographic space groups, a generalization 
of (17) is obtained [5, Eq. (175)]. By means of the program IRREP [2] it is possible 
to produce tables for all the crystallographic space groups, magnetic as well as 
nonmagnetic. The literature is not at all complete at this point. The results would, 
however, be enormously comprehensive. It is therefore preferable to make use of the 
programs [2, 41 in each particular application. 

The symmetrization procedure described here has now been combined with an 
energy band program. Several test runs are made and the agreement between sym- 
metrized and unsymmetrized versions is excellent. The band program uses the method 
of linear combinations of muffin-tin orbitals (LMTO) described in [lo, 111. This 
particular band program is orders of magnitude faster than conventional band 
programs. Symmetrization was found to be very important for classifying the crystal- 
lographic states. 

A complete energy band calculation has been made on EuO [12], using the LMTO 
program combined with SYMPRJ [4]. The advantage of using symmetrization is 
particularly stressed when more complicated compounds with several atoms per 
unit cell are investigated. 
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